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Abstract

A submerged fluid-filled circular cylindrical shell subjected to a shock wave propagating in the external fluid is

considered. The study focuses on a number of acoustic and structural effects taking place during the interaction.

Specifically, the influence of the acoustic phenomena in the fluid on the stress–strain state of the shell is analysed using

two different visualization techniques. The effect that the parameters of the shell have on the internal acoustic field is

addressed as well, and the ‘shock transparency’ of various shells is discussed. Special attention is paid to the analysis of

the contribution of the terms in the shell equations representing bending stiffness, and the limits of applicability of the

membrane theory of thin shells are discussed in the fluid–structure interaction context. The possibility of cavitation in

the internal fluid is investigated, and the effect that cavitation could have on the structural dynamics of the shell is

discussed. The present paper is a follow-up of the author’s earlier study of the interaction between fluid-filled cylindrical

shells and external shock waves.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between fluid-contacting elastic shells and shock loads is a complex dynamic process in which the role

of acoustic phenomena in the fluid(s) is as important as that of elastic phenomena in the structure. The coupling

between these two groups of effects is what makes the interaction so interesting and challenging to study. However, it

appears that over the years some aspects of the shell–shock interaction have received more attention than others. For

example, stress–strain states of shock-loaded shells have been extensively studied for at least five decades [e.g., Mindlin

and Bleich (1953), Geers (1969), Huang and Wang (1970), Huang (1979a,b), Andelfinger (1994), Wardlaw and Luton

(2000)] as have been various fluid dynamics phenomena for shock waves impinging on rigid structures [e.g., Bryson and

Gross (1961), Heilig (1969), Takayama (1987), Hermann et al. (1987), Ofengeim and Drikakis (1997), Heilig (1999),

Oakley et al. (2001), Sun et al. (2003)]. At the same time, significantly fewer studies have been published on other

fluid–structure interaction phenomena such as, for example, acoustic fields induced by elastic structures responding to

shock waves or acoustic pulses [e.g., Merlen et al. (1995), Takano et al. (1997), Ahyi et al. (1998)]. It also appears that

certain types of shell systems have attracted much more attention that others. Specifically, most of the mentioned works

addressed the case of an external loading on an empty submerged elastic shell or rigid structure, perhaps owing to a

strong and well-funded interest of the world’s navies in submersible vehicles.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

cf sound speed in the fluid, ĉf ¼ 1

cs sound speed in the shell material, ĉs ¼ csc
�1
f

In modified Bessel function of the first kind of

order n

h0 thickness of the shell, ĥ0 ¼ h0r�10

p0 incident pressure, p̂0 ¼ p0r
�1
f c�2f

pa peak incident pressure, p̂a ¼ par
�1
f c�2f

pi
r internal radiation pressure, p̂i

r ¼ pi
rr
�1
f c�2f

ps total pressure acting on the shell surface,

p̂s ¼ psr
�1
f c�2f

r radial coordinate of the polar coordinate

system, r ¼ Rr�10

r0 radius of the shell, r̂0 ¼ 1

R0 radial distance to the source of the incident

wave, R̂0 ¼ R0r�10

SR incident shock wave stand-off, ŜR ¼ SRr�10

t time, t ¼ tcf r�10

v� transverse displacement of the middle sur-

face of the shell, v ¼ v�r�10

w� normal displacement of the middle surface

of the shell, w ¼ w�r�10

d dimensionless mass per unit area of the shell

y angular coordinate of the polar coordinate

system

l exponential decay rate, l̂ ¼ lcf r�10

n Poisson’s ratio

xi
n response functions of the problem, internal

fluid

rf density of the fluid, rf ¼ 1

rs density of the shell material, r̂s ¼ rsr
�1
f

R radial coordinate of the polar coordinate

system, r ¼ Rr�10

t time, t ¼ tcf r�10

f fluid velocity potential, f̂ ¼ fc�1f r�10

f0 fluid velocity potential in the incident wave,

f̂0 ¼ f0c�1f r�10

fd fluid velocity potential in the diffracted

wave, f̂d ¼ fdc�1f r�10

fe
r fluid velocity potential in the external

radiated wave, f̂e
r ¼ fe

rc�1f r�10

fi
r fluid velocity potential in the internal

radiated wave, f̂i
r ¼ fi

rc
�1
f r�10

Other symbols are defined in the text.
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In contrast, some shell set-ups do not seem to have generated much interest in the fluid–structure interaction research

community. For example, acoustic fields formed inside fluid-filled submerged shells experiencing external shock loads

appear to have received very little attention. Even though such a system is less common than its evacuated counterpart,

there still are a number of important industrial applications that can be successfully modelled using such a set-up. An

underwater oil pipeline is probably the most apparent example, with cooling systems and offshore liquid storage tanks

being other systems which can be analysed using the ‘filled shell’ model. The environmental impact associated with

accidents involving, for example, oil pipelines, can be truly detrimental, and designing safer and more shock-resistant

structures has always been one of the industry’s top priorities. Along with the practical demand, the complexity of

shell–shock interaction has always been of theoretical interest as well. Therefore, detailed study of the interaction

between a submerged fluid-filled cylindrical shell and an external shock wave definitely appears to be of interest.

Such a study has recently been initiated by the author (Iakovlev, 2006), and a number of phenomena occurring in the

system were considered, such as the dynamics of the internal pressure field and radiation into the fluid of elastic waves

propagating in the shell. However, some effects that are of both theoretical and practical interest were left out of that

study, so the complete picture of the interaction has not yet been rendered. The goal of the present paper is to continue

the work initiated earlier and to deliver a more in-depth analysis of the interaction.

2. Mathematical model

We consider a circular cylindrical shell of radius r0 and thickness h0, and assume that h0=r051. We also assume that

the deflections of the shell surface are small compared to its thickness, and therefore linear theory of shells can be

applied. The transverse and normal middle surface displacements are v� and w�, respectively. The shell material is

characterized by density rs, sound speed cs, and Poisson’s ratio n. The shell is submerged into and filled with linearly

compressible, irrotational, nonviscous fluid of density rf . The sound speed in the fluid is cf . The shell is subjected to a

cylindrical shock wave with the source located at the distance R0 from the axis of the shell. Polar coordinates ðR; yÞ
based on the axis of the shell are employed. The schematic of the problem is shown in Fig. 1.

The fluids are governed by the wave equation

r2f ¼
1

c2f

q2f
qt2

, (1)

where f is the fluid velocity potential, and t is time.
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Fig. 1. Schematic of the problem.
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If we assume the Love–Kirchhoff hypothesis, the shell equations in displacements are [their detailed derivation using

Hamilton’s principle can be found in, e.g., Junger and Feit (1972)]

1

r20

q2v�

qy2
�

1

r20

qw�

qy
þ k2

0

1

r20

q3w�

qy3
þ

1

r20

q2v�

qy2

� �
¼

1

c2s

q2v�

qt2
, (2)

1

r20
w� �

1

r20

qv�

qy
þ k2

0

1

r20

q4w�

qy4
þ

1

r20

q3v�

qy3

� �
¼ wps �

1

c2s

q2w�

qt2
, (3)

where k2
0 ¼ h20=ð12r20Þ, w ¼ ðh0rsc

2
s Þ
�1, and ps is the pressure acting upon the shell surface. The surface pressure

comprises several components, namely the incident pressure, diffraction pressure, external radiation pressure, and

internal radiation pressure; the same applies to the fluid velocity potential. In the present work, we are mostly interested

in the internal radiation pressure.

The problem formulation also includes a set of boundary conditions, namely the ‘no-flow’ condition on the interface

qfd

qR

����
R¼r0

¼ �
qf0

qR

����
R¼r0

, (4)

where f0 is the fluid velocity potential in the incident wave and fd is that in the diffracted wave, dynamic conditions for

the internal and external radiated potentials, fi
r and fe

r , respectively,

qfi
r

qR

����
R¼r0

¼ �
qw�

qt
, (5)

qfe
r

qR

����
R¼r0

¼ �
qw�

qt
, (6)

conditions at infinity

fd�!0 and fe
r�!0 when R!1 (7)

and on the axis of the shell

�1ofi
rjR¼0o1, (8)

the periodicity conditions y-wise, and zero initial conditions.

To make the analysis more efficient (e.g., to avoid dealing with small numerical values of the time t), we introduce a
dimensionless formulation of the problem, normalizing all the variables to r0, cf , and rf . Dimensionless time t, for

example, is given by t ¼ tcf r�10 , and t ¼ 2 corresponds to the time it takes for the incident shock wave to move over the

shell. With some exceptions, a hat over a dimensionless variable distinguishes it from its dimensional counterpart. In

order to ensure a better applicability of the results, acoustic pressure fields are analysed in a dimensional form.

The acoustic part of the problem (i.e. the three boundary-value problems for the components of the fluid velocity

potential) was approached using a rather standard methodology based on combining separation of variables with the

Laplace transform technique. Then, a finite-difference solution of the modal form of the shell equations was coupled

with the analytical solution of the acoustic part to compute the shell displacements and, eventually, simulate the internal
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pressure field. As a result, the dimensionless internal radiation pressure p̂i
r was obtained in the form of a Fourier series

with time-dependent coefficients which, in turn, were expressed in terms of convolution integrals of the harmonics of the

normal displacement of the shell surface with the response functions for the geometry considered, xi
nðr; tÞ,

p̂i
rðr; y; tÞ ¼

X1
n¼0

Z t

0

d2wnðZÞ
dZ2

xi
nðr; t� ZÞdZ

� �
cos ny, (9)

where

wðy; tÞ ¼
X1
n¼0

wnðtÞ cos ny, (10)

and the Laplace transforms of xi
nðr; tÞ, X

i
nðr; sÞ, are given by

Xi
nðr; sÞ ¼

InðrsÞ

sI0nðsÞ
, (11)

where In is the modified Bessel function of the first kind of order n. The details can be found in Iakovlev (2006).
3. Phenomena considered

In this paper, we focus on a number of phenomena that appear to be of interest in the shell–shock interaction context

but which were not addressed in the companion paper (Iakovlev, 2006). We start with the analysis of the influence that

the internal fluid has on the shell dynamics, and consider the stress–strain state of a submerged shell with and without

internal fluid. This aspect of the interaction has been studied earlier [e.g., Iakovlev (2002)], but it is certainly of interest

to look at it again now, when the images of the corresponding acoustic field are available. Then, we address a somewhat

inverse problem, and analyse the influence that the shell has on the internal pressure field. Of particular interest here is

to find out how various shell materials and thicknesses affect the geometry and amplitude of the acoustic waves

propagating inside the shell. Next, we consider the distribution of the pressure on the shell surface. Even though the

surface pressure acting upon shock-interacting shells is quite well-studied, it appears of interest to put it into the

fluid–structure interaction perspective, i.e. to link it to a variety of elastic phenomena in the shell and acoustic effects in

the fluid. Then, we focus on the analysis of the contribution of the terms representing bending stiffness in the shell

equations. Even though this is not a physical phenomenon as such, establishing the limits of applicability of the

membrane theory of shells to the problems of the class considered is definitely of interest. Finally, we discuss such an

important aspect of shell–shock interaction as cavitation.

We consider a steel shell with rs ¼ 7800kg=m3 and cs ¼ 5000m=s. Unless stated otherwise, the thickness-to-radius

ratio is assumed to be h0=r0 ¼ 0:01, with r0 ¼ 1m and h0 ¼ 0:01m. The shell is submerged into and filled with water,

rf ¼ 1000kg=m3 and cf ¼ 1400m=s.
We continue to use the terminology introduced in the companion paper (Iakovlev, 2006), i.e. we refer to the points

y ¼ 0 and y ¼ p as the ‘head point’ and ‘tail point’, respectively. Furthermore, we call the pressure wave propagating in

the internal fluid the ‘internal shock wave’ due to the fact that the pressure rise associated with this wave is very sharp,

even though there is no pressure discontinuity. We also consider three different stages of the interaction which we term

the ‘downstream propagation’ ðt ¼ 0:0022:00Þ, ‘primary reflection and focusing’ ðt ¼ 2:0023:00Þ, and ‘upstream

propagation and secondary reflection and focusing’ ðt ¼ 3:0025:00Þ.
As for the incident wave, we only consider a shock wave with a large source stand-off (the distance between the shell

and wave source). Namely, we assume the stand-off to be equal to four radii of the shell, SR ¼ 4r0. This is due to the

fact that the linear model employed provides most realistic results for shock waves with large stand-offs; for smaller

stand-offs, much more sophisticated models are required to simulate the interaction acceptably accurately. The other

two parameters of the incident wave, namely the peak pressure in the front and the exponential decay constant, are

assumed to be pa ¼ 250kPa and l ¼ 0:0001314 s, respectively.
4. Dynamics of the internal acoustic field

Analysis of the phenomena mentioned is much more efficient when a sequence of pressure snapshots illustrating the

dynamics of the internal fluid is available. Even though such images can be found in the companion paper, the author

felt that reproducing them here in colour is appropriate. Not only having all the snapshots in one place makes their use
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more convenient, colour images also reveal some features that were not necessarily apparent from the halftone images

found in Iakovlev (2006).

Fig. 2 shows the series of colour pressure snapshots for a steel shell with the thickness-to-radius ratio of 0.01, the

‘default’ case analysed most extensively in this study. Since the main purpose here is to have an informative visual

representation of the dynamics of the process, the pressure magnitudes are not particularly important. For that reason,

colours are assigned individually for each snapshot, with blues corresponding to the lowest pressure at that particular

instant, the reds corresponding to the highest pressure, and the greens corresponding to the zero pressure. The instants

at which the snapshots are taken do not follow any particular pattern and are chosen to ensure that the most important

features of the interaction are well represented. The detailed discussion of the many acoustic phenomena observed can

be found in the companion paper, and we do not repeat it here.
Fig. 2. Dynamics of the internal acoustic field: t ¼ 0:0022:55, and t ¼ 2:6025:00.
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Fig. 2. (Continued)
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5. Influence of the internal fluid on shell dynamics

It was demonstrated (Iakovlev, 2006) that the physics of the interaction between a shock wave and an elastic circular

cylindrical shell is considerably more complex than that of the interaction between the same shock wave and a rigid-wall

circular reflector. However, it was also established that in terms of the magnitude of the radiated pressure, the influence

of the shell’s elasticity on the dynamics of the internal fluid is mostly limited to a number of second-order effects (a

scenario when cavitation develops is the only exception and is discussed later on). In view of that, it appears of interest

to find out how significant the effect of the internal fluid on the dynamics of the shell is.

Figs. 3 and 4 show the strains in the middle surfaces of two identical (steel, h0=r0 ¼ 0:01) submerged shells, one is

fluid-filled and the other is empty. The actual strains were scaled in each case so that the maximum displayed strain
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during the first circumnavigation is equal to approximately 20% of the shell radius; the actual strains in the fluid-filled

shell are significantly lower than those in the empty one.

One can see that at the beginning of the interaction the strains are qualitatively identical in both cases. However, in

the fluid-filled case, reflection of the internal shock wave from the tail region induces high-magnitude positive pressure.

That, in turn, leads to large positive strains which are not present in the empty shell case. In other words, during the

mid-interaction the stress–strain state of the empty shell is completely determined by elastic phenomena in the shell,

whereas that of a fluid-filled shell is mostly governed by acoustic effects in the internal fluid. One therefore observes

qualitative differences between the stress–strain states of a fluid-filled and empty shells subjected to the same shock wave

[a fact that was established for the three-dimensional case in Iakovlev (2002)].

Fig. 5 shows the strains in the corresponding three-dimensional case, i.e. the same fluid-filled shell subjected to a

spherical shock wave with the same peak incident pressure and exponential decay rate. The strains are scaled in the

same way as in the previous plots. As one can see, the strain dynamics is qualitatively very similar in the two- and three-

dimensional cases, the fact we referred to in the beginning of this study (Iakovlev, 2006) when discussing the

appropriateness of the two-dimensional results for qualitative analysis of the three-dimensional interaction. Note that

in the three-dimensional case, the strains decay faster than in the two-dimensional one (e.g., compare the snapshots at
0.10 0.20 0.35
0.50

0.65 0.80 1.00 1.15

1.30 1.50 1.65 1.85

1.95 2.00 2.10 2.15

2.20 2.35 2.45 2.50

Fig. 3. Dynamics of the middle surface strain, the submerged fluid-filled shell.
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0.10 0.20 0.35
0.50

0.65 0.80 1.00 1.15

1.30 1.50 1.65 1.85

1.95 2.00 2.10 2.15

2.20 2.35 2.45 2.70

Fig. 4. Dynamics of the middle surface strain, the submerged empty shell.
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t ¼ 1:8522:00). This is expected since in the three-dimensional case energy dissipation occurs in both the longitudinal

and transverse directions whereas in the two-dimensional case the elastic waves propagate without longitudinal

dissipation which results in much higher strains. One can also notice that in the three-dimensional case the strains

induced by the internal shock wave reflecting from the tail region are lower than those in the two-dimensional case. This

is not surprising either because of the faster dissipation of energy in the three-dimensional volume than in the

(effectively) two-dimensional one.

It is interesting to point out that during the early downstream propagation, the strain waves originated when the

incident wave first impinged on the shell do not seem to be significantly affected by either the internal or external shock

waves directly, i.e. there is no noticeable strain change corresponding to the interaction between the shell and either wave.

The normal displacements of the shell surface, in contrast, respond to the internal and external shock waves directly, and

the position of the corresponding wavefronts can be easily identified from the sequential plots of the displacement

dynamics, Fig. 6. The displacements shown are significantly enhanced (the maximum displacement is shown to be

approximately 30% of the shell radius). The actual displacements are much smaller than the shell thickness.

Comparison of Fig. 6 with Fig. 7 which shows normal displacements for the corresponding submerged empty shell

provides yet another perspective on the difference that the presence of the internal fluid makes in terms of the

stress–strain state of the shell. Namely, one can see that for the empty shell, at t ¼ 1:022:0 the amount by which the
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0.10 0.20 0.35
0.50

0.65 0.80 1.00 1.15

1.30 1.50 1.65 1.85

1.95 2.00 2.10 2.15

2.20 2.35 2.45 2.50

Fig. 5. Dynamics of the middle surface strain, the submerged fluid-filled shell—the three-dimensional case.
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normal displacement increases is practically the same everywhere in the shadow region at any given instant, and there

are no noticeable local irregularities in the distribution of w. In the fluid-filled case, however, the distribution of the

normal displacement in the shadow region is very irregular, and the pressure rise corresponding to the internal shock

wave is clearly detectable at the times in question. Furthermore, in the fluid-filled case, the displacement in the tail

region starts to increase intensively at t42 which indicates the response of the shell to the reflection of the internal

shock wave from its surface.

Summarizing the observations outlined, we conclude that the influence of the internal fluid on the shell dynamics is much

more significant than vice versa. Also, strains and displacements appear to have different dynamic features, and analysis of

all the components of the stress–strain state is recommended to compose the most complete picture of the shell dynamics.

6. ‘Shock transparency’ of the shell

Discussing the shell–shock interaction, there is another practically important issue to address. Namely, since the

existence of the internal shock wave is entirely due to the motion of the shell surface induced by the incident wave, it is
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0.10 0.35 0.80 1.15

1.30 1.50 1.85 1.95

2.00 2.10 2.25 2.50

Fig. 6. Dynamics of the normal displacement, the submerged fluid-filled shell.

0.10 0.35 0.80 1.15

1.30 1.50 1.85 1.95

2.00 2.10 2.25 2.50

Fig. 7. Dynamics of the normal displacement, the submerged empty shell.
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appropriate to talk about the ‘transparency’ of the shell to an incident shock wave. This notion of transparency is not

new, and was discussed in the structural context by Huang (1979a, b) for concentric spherical and coaxial cylindrical

shells, respectively. From the engineering point of view, understanding of ‘shock transparency’ of shells is quite

important, and is particularly critical for two- and multi-shell structures such as double-hull submarines and advanced

shock-resistant shell structures.

There are two questions to be answered here. First, how much is the internal shock wave influenced by the shell’s

geometrical and physical parameters, such as thickness, density, sound speed, and Poisson’s ratio? Second, how much

geometrically and physically different are the internal shock wave and the incident wave propagating in the same fluid

in the absence of the shell? We emphasize that the notion of ‘shock transparency’ only makes sense in the beginning of

the interaction, before acoustic effects due to the interaction of the internal shock wave and the shell become significant.

We start with the analysis of the acoustic fields inside shells of three different thicknesses. Fig. 8(b)–(d), shows the

internal fields at t ¼ 0:70 in the shells with the thickness-to-radius ratio of 0.005, 0.01, and 0.02, respectively; other

parameters of the system are the same as before. To facilitate the comparison, the incident wave is shown in the external

fluid. It should be emphasized that since neither the diffracted nor radiated waves are displayed, the shown external

pressure distribution is not the actual external acoustic field. Fig. 8(a) shows the incident shock wave propagating in the

fluid in the absence of the shell (the latter is still shown for reference purposes).

One can see that, as the thickness increases, the ‘shock transparency’ of the shell decreases, i.e. the maximum pressure

in the internal shock wave becomes lower and lower. Even though this result is rather obvious, Fig. 8 helps one to

quantify the pressure change. We also note that Fig. 8 provides yet another demonstration of the fact that the internal

shock wave does not have a pressure discontinuity associated with it, whereas the incident one does. We also note that,

since the materials of all three shells are the same, only the pressure magnitudes are different, not the geometries of the

shell-induced fields.
Fig. 8. Acoustic field in a steel shell at t ¼ 0:70; (a) in the absence of the shell, (b) h0=r0 ¼ 0:005, (c) h0=r0 ¼ 0:010, and (d)

h0=r0 ¼ 0:020.
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Next, we compare four shells with the same thickness-to-radius ratio of 0.01 but made of different materials, namely

steel with the parameters given above, aluminium (ra ¼ 2713kg=m3, na ¼ 0:334, and ca ¼ 5429m=s), titanium

(rt ¼ 4509kg=m3, nt ¼ 0:330, and ct ¼ 4140m=s), and copper (rc ¼ 8903kg=m3, nc ¼ 0:326, and cc ¼ 3868m=s). Fig. 9
shows acoustic fields inside these shells at t ¼ 0:70. One can see that of the three parameters of a shell, i.e. the sound

speed, Poisson’s ratio, and density, the latter seems to have the most profound effect on the shock transparency.

Namely, the higher the density the less transparent the shell is. It is interesting to point out that, even though the

circumferential advancements of the internal shock wave are the same for all four systems, those of the shell-induced

waves are not which is due to different wave speeds in the materials considered. The difference between the shell-

induced fields in the copper and aluminium shells is particularly striking. It is also clear now just how suitable the term

‘head waves’ is in reference to the shell-induced waves.

For practical purposes, however, it would be beneficial to introduce a parameter that would account for the observed

changes of the shock transparency due to varying parameters of the shell. It appears that the dimensionless mass per

unit area of the shell,

d ¼
h0

r0

rs

rf

, (12)

can be used for such assessment of the shock transparency. Namely, the smaller d the more ‘shock transparent’

a shell is.

The fact that the sound speed in the shell has a limited influence on the shock transparency is not surprising. The

sound speed governs the propagation of elastic waves in the shell, and we have shown (Iakovlev, 2006) that the influence

of those on the pressure is of second order of magnitude. Furthermore, it can be shown that in the beginning of the

interaction Eq. (3) is dominated by two terms, the acceleration one q2w�=qt2 and the pressure term ps. If we ignore all

other terms, the multiplier 1=c2s will cancel out, and the simplified equation will only depend on one parameter which is

exactly d. Thus, along with the physical considerations, it can also be demonstrated mathematically that the sound

speed and Poisson’s ratio have little effect on the shock transparency of a shell.
Fig. 9. Acoustic field in a shell with h0=r0 ¼ 0:01 at t ¼ 0:70: (a) copper shell, (b) titanium shell, (c) steel shell, and (d) aluminium shell.
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As to the difference between the geometrical and physical parameters of the incident shock wave in the absence of the

shell and those of the internal shock wave, it is apparent that the geometry of the ‘front’ of the internal shock wave is

the same as that of the incident wave. Also, it can be shown that the pressure decay behind the ‘front’ is almost exactly

the same as that in the incident shock wave, i.e. the entire process seems to have the same exponential decay rate. In

other words, it appears that for a thin shell, the internal shock wave is a geometrical and physical ‘continuation’ of the

incident wave inside the shell. It is important to emphasize that this is true only if the internal and external fluids are

identical. If the fluids are different, the physics of the interaction is much more complex, and the geometry of the

internal shock wave differs from that of the incident one.

Analyzing shock transparency, it is important to remember that the maximum pressure during focusing depends not

on the peak incident pressure, but on the peak pressure in the internal shock wave in the beginning of the interaction.

The latter depends on the parameters of the shell, and so does the maximum focusing pressure. For example, for the

three considered thickness-to-radius ratios of 0.005, 0.01 and 0.02, the maximum focusing pressure exceeds the peak

incident one by about 50%, 30%, and 6%, respectively. This reiterates the practical importance of considering all

acoustic phenomena in the internal fluid.
7. Fluid–structure interaction on the interface

Throughout the paper, as well as in Iakovlev (2006), we discuss various types of waves propagating in the shell and

fluid. To that end, the two-dimensional density plots in polar coordinates we used to display acoustic fields have been

very useful, as have been the snapshots of the cross-section of the shell. However, often one’s objective is to analyse the

pressure dynamics exclusively on the shell surface (this would be the case when, for example, the stress–strain state of a

shell is a primary concern). In such a case, it appears that two-dimensional plots of pressure time-history in the t–y
coordinates, i.e. time-space ‘unwraps’ of the pressure distribution along the shell’s circumference, are most suitable.

Such a visualization technique is not conventional but is very representative of all aspects of the interaction [e.g., Latard

et al. (1999) successfully used the time–space approach in spherical coordinates to analyse wave patterns produced by

an elastic spherical structure interacting with an acoustical pulse].

A very useful feature of the t–y coordinate system is that any wave propagating in the shell with a constant velocity

will appear as a straight line with the slope being numerically equal to the dimensionless velocity of propagation. This

property is particularly useful as to distinguish shell-radiated waves from all other acoustic effects. We also mention

that the bottom of the plot corresponds to the head point and the top to the tail point. This makes t–y plots especially

convenient for analysis of wave reflection and/or superposition at those points.

Fig. 10(a) shows such a t–y plot of the pressure on the inner surface of the shell, and Fig. 10(b) displays a low-

magnitude ‘close up’ of the pressure field. Two types of waves are seen in the plots. The waves of the first type appear as

curves (associated pressures are both high- and low-magnitude), and the waves of the second type are represented by

straight lines (low-magnitude pressures only). Note that the plots discussed in this section are particularly informative

when analysed along with the sequential snapshots of the internal acoustic field, Fig. 2.

We begin with the analysis of the waves of the first type, and consider the high-magnitude wave represented by the

curve W1 starting at the point ð0; 0Þ and terminating at the point ð2; pÞ. This wave is induced directly by the internal

shock wave as it propagates through the fluid and interacts with the shell surface. The wave’s velocity of propagation is

not a constant relative to the shell, so it appears as a curve. It reaches the tail point at t ¼ 2 and no reflected wave of the

same order of magnitude is observed on the shell surface, only a small-magnitude reflected wave R2 (marked on the

low-magnitude close-up, Fig. 10(b)). This happens because, as we have seen, the high pressures associated with the

primary reflection manifest themselves on the shell surface with a considerable delay. This, in particular, prompts us to

emphasize that analysing the surface pressure, one should be aware of the fact that often phenomena occurring inside

the fluid have no or little immediate effect on the surface pressure patterns, and the surface pressure distribution at any

particular instant not necessarily reflects the entire acoustic field. We also note that now it is particularly apparent that

the highest internal pressure is attained in the shadow zone ðjyj4p=2Þ at times larger than 1, i.e. when the incident wave

moved more than half way over the shell, and when the pressure in it decreased quite significantly from what it was in

the beginning of the interaction. This is yet another occasion to emphasize the importance of wave phenomena in the

system.

At t � 1:4, a lower-magnitude wave W2 is seen to branch from the ‘primary’ wave W1. This separation corresponds

to transition from Mach to regular reflection, and so the wave W2 represents the Mach stem (the actual transition

occurs earlier but is hard to detect in the plots shown). The wave W2 reaches the tail point at t � 2:6, which corresponds

to the collision of the portions of the Mach stems that are in contact with the shell. From then on, the ‘primary’ reflected

wave R1 manifests itself on the shell surface.
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Fig. 10. Pressure on the inner surface of the submerged fluid-filled shell in the t–y coordinates, 0ptp5 and 0pypp: (a) the entire

pressure range, and (b) low-magnitude ‘close-up’.

S. Iakovlev / Journal of Fluids and Structures 23 (2007) 117–142130
The low-magnitude wave R2 originated at the tail point at t ¼ 2 corresponds to the ‘secondary’ reflected wave

(Iakovlev, 2006). The pressure in it remains negative throughout the interactions, and its reflection pattern at the head

point at t � 3:425:0, Fig. 10(b), is closely resembling that of the wave W1 at the tail point at t � 1:423:0. In particular,
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one can observe branching of the wave R3 at t � 3:4, as well as the series of ‘tertiary’ reflected waves RR1 which are of

the same nature as the wave R1 and the waves R4–R6 which will be discussed shortly.

The slope of the curve corresponding to the primary reflected wave R1 is constantly increasing, and by the time it

reaches the head point it appears almost as a vertical line. This is due to the fact that the curvature of the ‘front’ of this

wave is very close to that of the shell surface. A series of low-amplitude reflected waves accompany the wave R1, and

one can clearly identify at least three of them, R4, R5 and R6. All of them represent self-similar multiple regular

reflections that develop during the late interaction (Fig. 2 and particularly, Figs. 11 and 12 of Iakovlev (2006)). The fact

that the waves R4–R6 appear almost as straight lines is purely due to the geometry of the multiple reflected

‘wavefronts’. Reflection of these waves from the head region occurs at t45 and is not considered here. As it was the

case with the wave W1, the wave R1 terminates at the head point with no corresponding reflected wave of similar

magnitude. Note that even though R1 and R2 have very different geometries, they reach the head point at the exactly

same time. Also note that the collision of the Mach stems corresponding to the wave R1 occurs at the head point at

t45, and is not addressed here either.

Now we turn to the low-magnitude waves that appear as straight lines, Fig. 10(b). As we pointed out before, such

appearance indicates that the waves in question represent radiation into the fluid of the elastic waves propagating in the

shell. As one can see, the overall dynamics of these shell-induced waves is much less complex than that of the acoustic

waves. Three distinct waves can be identified in the plot. The first wave, E1, represents radiation by the elastic wave

originated in the very beginning of the interaction when the incident shock wave first impinges on the shell. The

associated pressure is negative. The second wave, E2, corresponds to the elastic wave originated at the tail point at t � 2

when the internal shock wave reflects from the tail region. The associated pressure is positive. The third wave, E3,

represents the elastic wave originated at t � 4 at the head point as a result of the secondary reflection of the internal

shock wave. The corresponding pressure is negative.

The discussion of the surface pressure would not be complete without comparison of the present case to

that of a submerged empty shell. Fig. 11 shows the t–y plot of the pressure on the outer surface of a submerged

evacuated shell subjected to the same shock wave. One can see just how much simpler the physics of the interaction is when

no internal fluid is present. There are no complex reflection phenomena during the downstream propagation, and no

reflected acoustic waves travelling up- and downstream. The entire interaction is driven by the external acoustic effects, and

there is only one shell-induced wave, as opposed to three in the fluid-filled case. It is of particular practical interest that,

unlike in the case of a fluid-filled shell, the highest pressure is attained in the head region at the very beginning of the

interaction.

Finally, we look at the t–y plots of the strains in the middle surfaces of the fluid-filled and empty shells, Fig. 12. The

difference between the two cases is striking, and one has yet another perspective on the complexity brought into the

interaction by the internal fluid. We also mention that, as we have previously seen for a fluid-filled shell (Fig. 3), in the

beginning of the interaction there is no significant strain due to the interaction of the internal acoustic wave with the

shell, only the strain wave induced by the incident shock when it first impinges on the shell. This phenomenon is

particularly clearly illustrated now. One can observe that the first noticeable strain due to the acoustic interaction

between the internal shock wave and the shell is observed at t41:8, i.e. when the wave approaches the tail region. Later

ðt � 2Þ, high-magnitude positive strains are induced at the tail point during the primary reflection, and a lower-

magnitude wave of negative strains detected at t43:8 is due to the secondary reflection. In contrast, only one wave of

negative strain is travelling around a submerged empty shell.
8. Analysis of the contribution of bending terms

We mentioned earlier (Iakovlev, 2006) that for very thin shells ðh0=r0p0:01Þ the contribution of the terms

representing bending stiffness in the shell equations (2) and (3) (the terms multiplied by k2
0; for brevity, we refer to them

as the ‘bending terms’) is not significant. In this work, we present the results that led us to that conclusion. Specifically,

we simulate the pressure on the inner surface of several different shells using two different models, the complete one that

takes all the bending terms into account (i.e. the model with bending stiffness), and the membrane model in which all

the bending terms are neglected (and so is bending stiffness), and compare the results. We start with the analysis of the

steel shell with h0=r0 ¼ 0:01.
Fig. 13 shows the surface pressure produced by the two models. The pressure patterns appear to be very similar, and

the difference due to the bending terms is difficult to analyse. To make our task easier, we plot the difference separately,

Fig. 14(a). Fig. 14(b) depicts a much narrower pressure range.

As one can see, the contribution of the bending terms in this case is limited to a series of extremely high-

frequency, low magnitude ‘waves’. Even though the maximum magnitude of the contribution of the bending
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Fig. 11. Pressure on the outer surface of the submerged empty shell in the t–y coordinates, 0ptp5 and 0pypp: (a) the entire pressure
range, and (b) low-magnitude ‘close-up’.
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terms is about 30% of that of the incident pressure, the regions where the maximum values are

attained are very localized in space and time. It is also apparent from Fig. 14(b) that one has to consider

very low-magnitude pressures (about 1% of the peak incident one) to notice more or less extensive regions
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Fig. 12. Strains in the middle surface of the fluid-filled (a) and empty, (b) submerged shells in the t–y coordinates, 0ptp5 and

0pypp.
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of the t–y space affected by the bending terms. Thus, it appears that for a shell with h0=r0 ¼ 0:01
neglecting the bending terms does not have any significant effect on the distribution of the pressure inside

the shell.
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Fig. 13. Pressure on the inner surface of the shell in the t–y coordinates, 0ptp5 and 0pypp; h0=r0 ¼ 0:01; (a) bending terms are

taken into account, and (b) bending terms are neglected.
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What happens when the thickness-to-radius ratio is different from 0.01? To answer this

question, we consider two more shells, one with the thickness-to-radius ratio of 0.005 and the other with

that of 0.02.
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Fig. 14. Difference between the surface pressures produced by the models with and without bending stiffness, h0=r0 ¼ 0:01: (a) entire
pressure range, and (b) low-magnitude close-up.
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Fig. 15 shows the difference between the pressures produced by the two models for the thinner shell, h0=r0 ¼ 0:005
(the pressure patterns themselves are very similar in this case and are not shown). As one can see, the maximum

magnitude of the contribution of the bending terms does not exceed 10% of the maximum incident pressure.

Furthermore, the frequency of the oscillations contributed by the bending terms is even higher than in the case of
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h0=r0 ¼ 0:01. Thus, not only the contribution of the bending terms is much lower in magnitude, it is also

more localized than in the ‘default’ case of h0=r0 ¼ 0:01. So, the bending terms can be neglected for such a thin shell as

well.

Finally, Fig. 16 shows the results produced by the two models for the thicker shell, h0=r0 ¼ 0:02, and the

corresponding pressure difference is shown in Fig. 17. One can see that in this case, the magnitude of the contri-

bution of the bending terms is significantly higher (more than 60% of the maximum incident pressure). The frequency

of the corresponding pressure oscillations is noticeably lower than in the previous two cases, and the contribution

of the bending terms is not localized as much as it was before. Moreover, a pressure close-up at approximately

5% of the maximum incident pressure, Fig. 17(b), reveals extensive regions affected by the bending terms. Thus, even

though the acoustic fields produced by the two models are still qualitatively similar, the higher-order effects brought in

by the bending terms start to play a much more important role. One therefore has to be careful when applying the

membrane model to shells with h0=r0X0:02, especially if the detailed analysis of the internal pressure field has to be

carried out.

In summary, it appears that for thin shells ðh0=r0p0:01Þ neglecting the bending terms in the shell equations

does not lead to any significant changes in the internal acoustic field. For thicker shells, however, careful analysis is

needed before the bending terms can be neglected. Even though for such thicker shells the model without bending

stiffness is still likely to produce qualitatively acceptable results, the corresponding numerical values could be

inaccurate.
9. Cavitation

Finally, one more issue needs to be addressed before the study of the interaction can be considered complete. Namely,

we have seen that the pressure in some regions of the internal fluid can be negative. This suggests the possibility of

cavitation, since it is known that water, for example, cannot withstand significant tension, and will start to cavitate if

pressure falls below a certain critical value (maximum tension water can withstand for very short times is in the

10–100 kPa range [e.g., Makinen (1998)]). Cavitation in the systems of the type considered is a significant engineering

concern, and is a challenging phenomenon to study from the researcher’s perspective.
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Fig. 16. Pressure on the inner surface of the shell, h0=r0 ¼ 0:02: (a) bending terms are taken into account, and (b) bending terms are

neglected.
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Fig. 17. Difference between the surface pressures produced by the models with and without bending stiffness, h0=r0 ¼ 0:02: (a) entire
pressure range, and (b) low-magnitude close-up.
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Cavitation can completely change the dynamics of the interaction. In particular, if it occurs inside the fluid domain

(i.e. if the cavitating region does not interact with the shell surface), it usually leads to structure reloading after the

cavitation zone collapses [e.g., Wardlaw and Luton (2000)]. If the cavitation region is adjacent to the shell surface,
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Fig. 18. Cavitation scenarios for four values of the maximum allowable tension in the internal fluid: (a) 7.5 kPa, (b) 15 kPa, (c) 20 kPa

and (d) 50 kPa.
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separation of the latter from the fluid occurs leading to much higher displacements and deformations [e.g., Makinen

(1998)]. When the shell and fluid come in contact again, shell reloading takes place with the pressures comparable to

those of the initial shock loading.

Once cavitation occurs, the rest of the interaction is quite different from what is predicted by a model that does not

take cavitation into account. Strictly nonlinear phenomena will dominate, and the linear model employed here will be of

little use, if any. However, the solution we developed is still useful for predicting the regions where cavitation is likely to

develop. Specifically, if we set a certain ‘threshold’ value of the tension at which the fluid starts to cavitate, it will be easy

to visualize the regions prone to cavitation.

We illustrate this idea considering four different values of the maximum tension the fluid is still able to withstand, 7.5,

15, 20, and 50 kPa. Fig. 18 shows pressure patterns before and after the pressure in the fluid falls below the

corresponding critical value for the first time; magenta colour is used to distinguish the regions where the pressure is

lower than the critical value from the rest of the acoustic field.
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Fig. 20. Regions prone to cavitation during the late interaction at the maximum allowable tension of 75 kPa.

Fig. 19. Regions prone to cavitation during the mid interaction at the maximum allowable tension of 100 kPa.
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As one can see, different cavitation thresholds lead to completely different cavitation scenarios. For the first

threshold, the cavitation starts at the very beginning of the interaction. Massive cavitation zones adjacent to the shell

develop, and extensive separation of the shell surface from the fluid is expected to occur. This is probably the worst-case

scenario from the modelling point of view since cavitation zones are very extensive and cavitation occurs very early in

the interaction. We note that this type of cavitation is entirely due to fluid–structure interaction effects since the internal

shock wave has not yet reached the areas affected by cavitation. We also mention that this ‘surface’ type of cavitation is

described in general terms for the case of an external loading in Mair (1999).

For the second threshold, cavitation starts later, at t � 1:0021:10, and it develops in the proximity of the tail point.

Separation of the shell surface is expected to occur as well, but in this case, because of the already high stresses induced

by the superposition of the elastic waves at t � 0:88, it will likely be more dangerous in terms of the structural response.

Note that this cavitation scenario is entirely due to fluid–structure interaction phenomena as well.

In the third case, the scenario is totally different once again, and this time cavitation develops inside the fluid. The

cavitation region does not interact with the shell surface, and its eventual collapse will cause reloading of the structure.

The fluid–structure interaction nature of cavitation is again the case.

For the fourth maximum allowable tension, cavitation starts within two very local symmetric regions in the close

proximity of the shell surface at t � 2:50, and shortly after that it starts to develop inside the fluid domain as well. From

the practical point of view, this scenario is probably the least dangerous since the very local near-wall cavitation regions

are not likely to have a significant effect on the dynamics of the shell, and the region inside the fluid is relatively small.

Unlike the first three cases, cavitation is now caused exclusively by acoustic phenomena in the internal fluid.

We would like to point out that for the values of the maximum allowable tension in the 10–12 kPa range, cavitation

will develop almost simultaneously both on the shell surface and in two symmetric zones inside the fluid. This happens

when pressure in the blue zones ahead of the ‘wavefront’, Fig. 18(b), falls below the critical level. This case is, perhaps,

the most complicated in terms of the structural analysis since the shell is likely to experience both the reloading

associated with its separation from fluid and that due to collapse of the cavitation zones inside the fluid.

For the maximum allowable tension significantly higher than 50 kPa, cavitation is still possible but it starts during

either the mid or late interaction. In particular, we have seen that after the primary and during the secondary focusing

pressures as low as �140 and �155kPa, respectively, are observed. Since the cavitation threshold will almost definitely

be above these values, cavitation will develop. From the practical point of view, the possibility of cavitation so late in

the interaction means that structure reloading due to cavitation collapse is possible even at times more than twice of

what it takes for the incident wave to move over the shell. However, the corresponding regions of low pressure are very
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local and exist for a very short time, and so the influence of cavitation on the shell is not expected to be significant. As

an example, Fig. 19 illustrates what happens during the mid interaction if the maximum allowable tension is set to

100 kPa, and Fig. 20 shows the regions prone to cavitation during the late interaction at the maximum allowable tension

of 75 kPa.

Concluding these remarks about cavitation, we would like to emphasize that even though the influence of the

elasticity of the shell on the dynamics of the internal fluid was shown to be of second order of magnitude, it becomes

determining when cavitation is a concern. We also emphasize that the discussion presented is mostly hypothesizing

based on general understanding of cavitation in the fluid–structure interaction context, and the results presented here

should only be viewed as a preliminary theoretical analysis. Numerical simulation using models that take cavitation into

account and/or experiments are needed to confidently make any statements about cavitation in shock-interacting shells.
10. Conclusions

We have considered the interaction between a submerged fluid-filled circular cylindrical shell and an external shock

wave, and focussed on a variety of fluid–structure interaction phenomena occurring during the interaction. The analysis

was based on the semi-analytical solution developed in the author’s earlier work (Iakovlev, 2006).

The dynamics of the shell was considered, in particular the strains and normal displacements of the shell surface were

analysed. It was found that even though the influence of the elastic effects in the shell on the internal fluid is usually of

second order of magnitude, the influence of the acoustic waves in the fluid on the stress–strain state of the shell is much

more significant, and the presence of the internal fluid completely changes the dynamics of the interaction.

Special attention was paid to the analysis of the pressure distribution on the shell surface which was performed using

two-dimensional time-space plots. It was observed how various waves propagating in the internal fluid manifest

themselves on the shell surface, and such images have proven to be a very informative complement to the traditional

plots in polar coordinates. Specifically, the acoustic effects associated with shell-induced waves are very easy to

distinguish from those related to the internal shock wave using the time-space visualization technique.

The ability of the shell to reduce the intensity of the incident shock as it penetrates the structure, or its ‘shock

transparency’ as we termed it, was investigated as well. Various materials and shell thicknesses were considered, and the

effect that they had on the shock transparency of the shell and the geometry of the internal pressure field was analysed.

The dimensionless mass per unit area of the shell was proposed as a measure of its ‘shock transparency’. It was observed

that if the internal and external fluids are identical, the shell does not change the geometry of the incident wave or its

decay constant, i.e. the internal pressure wave is a geometrical and physical ‘continuation’ of the incident wave inside

the shell.

The possibility of cavitation in the internal fluid was discussed as well. Such analysis was prompted by the fact that

relatively high-magnitude tension was observed to occur in the fluid during the interaction. It was found that different

values of the maximum allowable tension correspond to completely different cavitation scenarios. A number of those

were discussed using colour images of the internal pressure field. Some of the scenarios considered appeared to be

relatively harmless in terms of the structural safety, whereas some seemed to present a serious threat to the structure due

to such effects as separation of the shell from the fluid and cavitation zone collapse.

The contribution of the terms representing bending stiffness in the shell equations to the stress–strain state of the shell

was analysed as well, and two different models, with and without bending stiffness, were considered. It was found that

for shells with the thickness-to-radius ratio of or less than 0.01 ignoring bending stiffness does not result in any

qualitatively significant changes in the internal acoustic field. For thicker shells, however, careful analysis is needed

since ignoring bending stiffness may lead to considerably incorrect magnitudes of the internal radiation pressure.

The present work completes the study initiated in the companion paper (Iakovlev, 2006). The two papers complement

each other and cover a broad spectrum of phenomena, both acoustical and structural, that occur during the shell–shock

interaction. The model developed and validated in the papers appears to be suitable for use as a benchmark. It also

appears that the approach employed here can be successfully used to study more complex shell systems, in particular

those for which experimental data are not yet available.
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